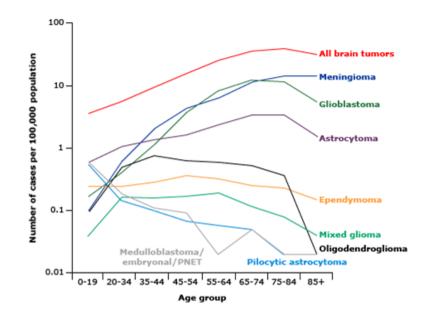
Olfactory Groove Meningiomas

Neurosurgery I Elective Carle Illinois College of Medicine Carle Foundation Hospital

Joseph Policarpio, M3 joep3@illinois.edu

Elective Preceptors


Dr. Kevin Teal MD, Dr. Paul Arnold MD, Dr. Wael Hassaneen Mostafa MD PhD

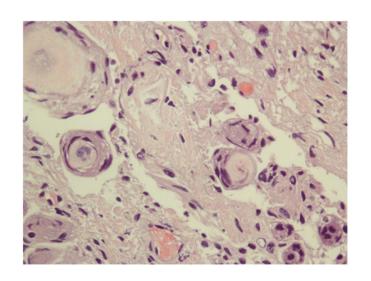
Epidemiology of Meningioma

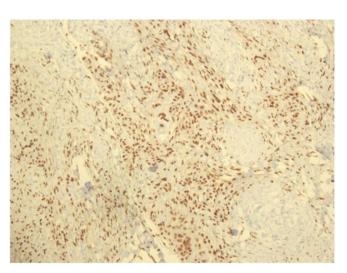
- Meningioma is the most common primary intracranial neoplasm in
 - adults (metastases are most common)
 - 20-36% of intracranial tumors
 - incidence of 1.8-13 per 100,000
 - Approximately 80% of these are benign
- Olfactory groove represent:
 - 2% of all intracranial tumors
 - 5%–18% of all intracranial meningiomas

Incidence rates of primary brain tumors by major neuroepithelial tissue and meningeal histologic types and age group

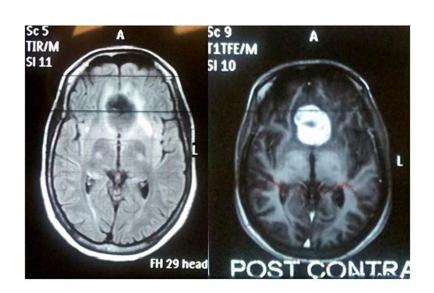
Risk Factors for Meningioma

- Ionizing radiation (most important acquired risk factor)
 - radiation treatment for malignancy
 - incidental radiation (radiographs, CT, atomic bombs)
- Genetic predisposition 22q alterations
 - NF2 (75% lifetime risk)
 - MEN1
 - Schwannomatosis (SMARCB1 tumor suppressor)
- Reproductive age female
 - Hormonal factors: progesterone, androgen, estrogen)
- Breast cancer
- High-dose cyproterone (anti-androgen, not approved in the US)
- Ever-use estrogen or estrogen-progestin therapy (RR 1.35)
- Obesity (OR 1.4 to 2.1)
- Age > 65 years
- Higher in African American than other ethnic groups in the US




Typical Clinical Presentation

- Asymptomatic
- Seizure
- Focal neurological deficits


Typical Clinical Presentation

- Asymptomatic
 - Discovered incidentally
- Seizure
 - Found in approx. 30%
- Focal neurological deficits
 - Visual changes
 - Foster Kennedy syndrome
 - Unilateral optic atrophy
 - Contralateral papilledema
 - Anosmia
 - Progressive unilateral visual loss
 - Weakness of extraocular movements
 - Loss of smell (olfactory groove or sphenoid ridge)
 - Mental status changes
 - Apathy
 - Inattention

Typical Workup

- H&P consider risk factors
 - especially prior therapeutic radiation
 - Genetic syndromes (NF2)
- Physical Exam is usually normal
- Labs:
 - CBC, CMP if hypercalcemia or anemia, may consider further testing for multiple myeloma or hematologic malignancy
 - Lumbar puncture / CSF labs not usually necessary unless atypical features on imaging such as leptomeningeal enhancement
- Imaging
 - CT with contrast (72% of meningiomas contrast enhance vs. 60% that appear hyperdense without contrast)
 - MRI with contrast

Neuroimaging Features

Typical	Atypical
 Smooth contour Homogeneous enhancement Dural tail Calcification 	 Large or disproportionate amount of associated edema Intratumoral cystic change Extensive bone involvement Brain or leptomeningeal
lvement or reactive also the small whead).	 Invasion Low apparent diffusion coefficient Elevated cerebral blood volume

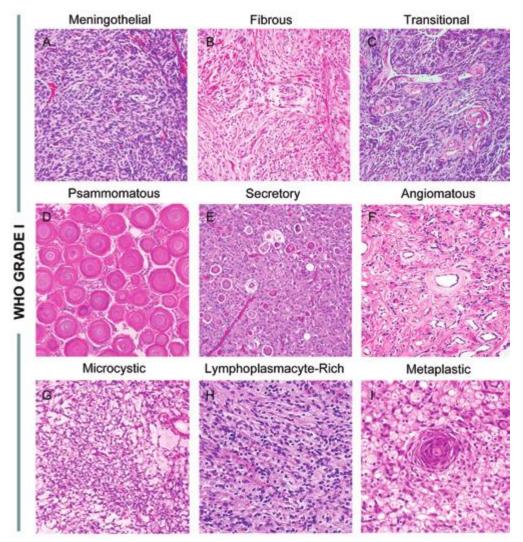
- A: Tail sign: tapering dural thickening (arrow) due to direct tumor involvement or reactive change in the dura, is a highly characteristic sign of meningioma; note also the small reactive arachnoid cyst, reflecting the extra-axial site of this lesion (arrowhead).
- B: Reactive cerebral white matter changes.
- C: Bony reactive changes: reactive bone sclerosis, reflected in the increased vault thickness (arrows) is seen most commonly in patients with multiple meningiomas associated with neurofibromatosis type 2; invasive tumors such as these can cause problematic extracranial facial masses.

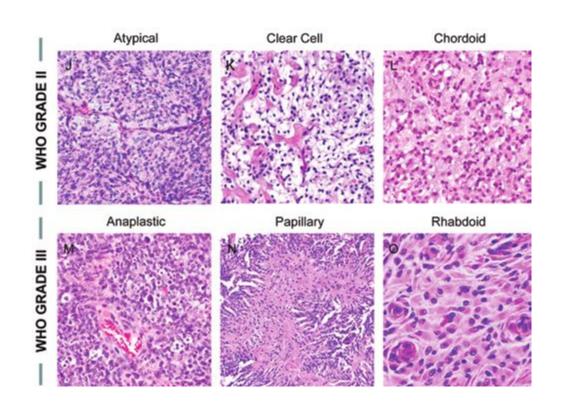
Differential Diagnosis

- Lymphoma
- Plasmacytoma
- Metastatic carcinoma
- Melanocytic neoplasms
- Solitary fibrous tumor
- Gliosarcoma
- Inflammatory lesions such as
 - Sarcoidosis
 - Granulomatosis with polyangiitis
- Infections such as tuberculosis

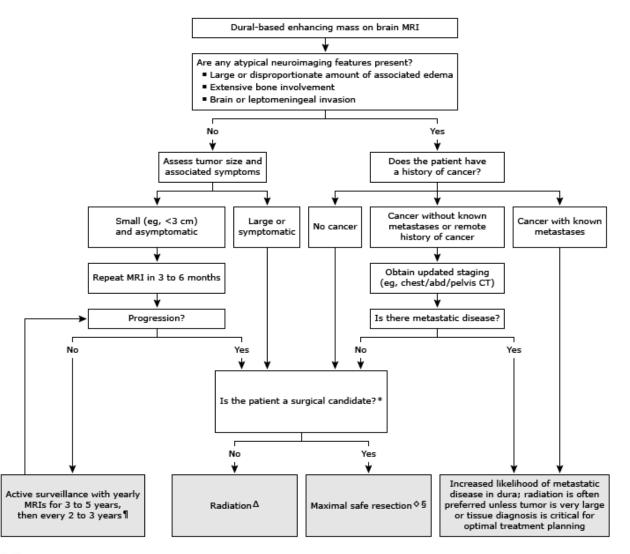
WHO Classificiation

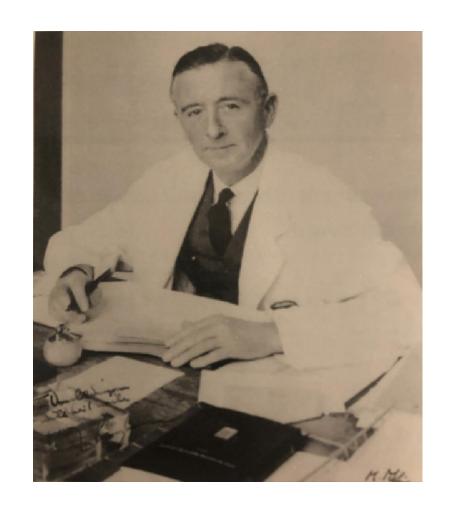
• Distinguished by histological subtype

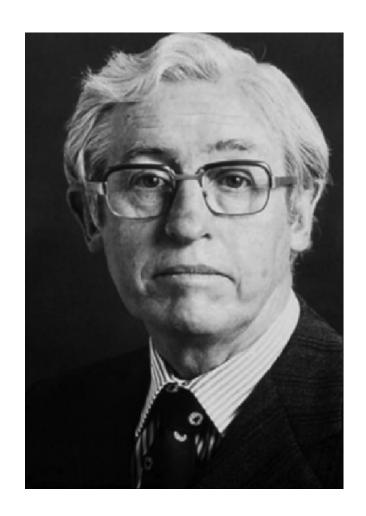

World Health Organization (WHO) Meningioma Classifications

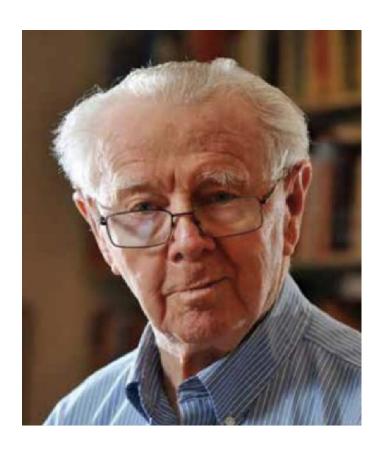

WHO Grade I Benign	WHO Grade II Atypical	WHO Grade III Malignant
Meningiothelial	Chordoid	Papillary
Fibrous (fibroblastic)	Clear Cell	Rhabdoid
Transitional (mixed)	Atypical	Anaplastic
Psammomatous		
Angiomatous		
Microcystic		
Secretory		
Lymphoplasmacyte-rich		
Metaplastic		

Histopathology of Meningioma




Treatment


- Some may not require treatment:
 - 1. Incidental discovery
 - 2. Elderly patients, consider expected survival
 - 3. Patients with significant comorbidities
 - 4. Risks outweigh benefits
 - 5. Meningiomas that have been stable for a long period (likely highly calcified)
- Consider reducing hormone exposure if possible
- Surgical candidacy varies based on tumor location (eg, deep vs superficial, proximity to critical structures), imaging evidence of invasion, and presurgical status of the patient
- Radiation



Donald Simpson (1927-2018)

Simpson Grading of Meningioma Resection

• grade I

- complete removal including resection of underlying bone and associated dura
- **9**% symptomatic recurrence at 10 years

• grade II

- complete removal and coagulation of dural attachment
- 19% symptomatic recurrence at 10 years

• grade III

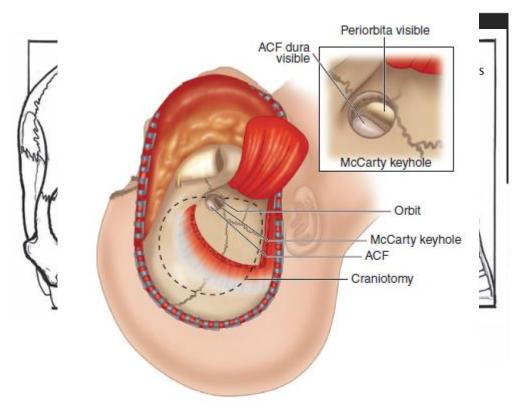
- complete removal w/o resection of dura or coagulation
- 29% symptomatic recurrence at 10 years

grade IV

- subtotal resection
- 44% symptomatic recurrence at 10 years

grade V

- simple decompression with or without biopsy
- 100% symptomatic recurrence at 10 years (small sample in original paper)



Original 1957 paper:

Surgical Approaches

- Endoscopic endonasal transcribiform
- Bifrontal transbasal
- Pterional
- in a series of 25 patients, 19 patients underwent bifrontal approach, and pterional approach was used in the remaining six

Pathology

Immunohistochemistry

- 80% positive for Epithelial Membrane Antigen (EMA)
- 39-80% positive for Progesterone Receptor (PR)
- 33% positive for S-100
- 15% positive for CD34
- pHH3 can be used for prognostication
- Ki-67 can be used for prognostication
- Usually GFAP negative

Molecular risk stratification

- TERT promotor region mutation OR
- Homozygous CDKN2A/B deletion are independent WHO classification criteria for Grade 3 meningioma
- loss of trimethylation of lysine 27 of histone 3 (H3K27me3) associated with increased rate of recurrence

Case 1 presentation

- 46yo right-handed African-American female
- h/o iron deficiency anemia, HTN, tobacco use
- Presents with new onset, witnessed generalized tonic-clonic seizure, 4 min long
 - Systolic BP in 190s
- Personality change over the past several years
 - irritability, confusion
- Menorrhagia for some time
- Twin sister had seizures at age 25, controlled medically then weaned, now seizure free
- Familial history of leukemia
- No focal neurological deficits
- admitted to ICU

Case 1 Workup

- CBC, CMP
- LTM EEG showed no epileptiform activity
- CTA brain and neck
- MRI brain
- CT brain without contrast

WBC	4.00 - 11.00 10^3/uL	8.94
RBC	3.50 - 5.20 10^6/uL	4.12
HGB	11.0 - 16.0 g/dL	8.6 🗸
нст	34.0 - 47.0 %	29.6 🗸
MCV	80.0 - 100.0 fL	71.8 🗸
МСН	26.0 - 33.0 pg	20.9 🗸
мснс	31.0 - 35.0 g/dL	29.1 🗸
RDW	12.0 - 15.0 %	25.8 ^
RDW-SD	38.0 - 52.0 fL	64.3 ^
PLATELET	140 - 400 10^3/uL	303
MPV	9.0 - 12.0 fL	10.4
PLATELET EST		AGREE
GIANT/ENLARGED PLT		4.30
MICRO	%	<25
MACRO	%	<25
НҮРО	%	<25
POLY	%	1-5
SCHISTOCYTE	%	1-3
TARGET	%	5-10
TEAR DROP	%	1-3
CRENATED	%	10-25
SEG	%	93.9
LYMPHOCYTE	%	4.4
MONOCYTE	%	0.0
EOSINOPHIL	%	0.0
BASOPHIL	96	1.7
ABSOLUTE NEUTR	1.60 - 7.70 10^3/uL	8.39 ^
ABSOLUTE LYMPH	1.00 - 4.90 10^3/uL	0.39 🗸
ABSOLUTE MONO	0.00 - 1.10 10^3/uL	0.00
ABSOLUTE EOS	0.00 - 0.50 10^3/uL	0.00
ABSOLUTE BASO	0.01 - 0.20 10^3/uL	0.18

CALCIUM	8.9 - 10.6 mg/dL	9.0
GLUCOSE	74 - 100 mg/dL	120 ^
BUN	7 - 19 mg/dL	5 🗸
CREATININE	0.55 - 1.02 mg/dL	0.66
TOTAL PROTEIN	6.0 - 8.0 g/dL	7.6
ALBUMIN	3.5 - 5.0 g/dL	3.9
BILIRUBIN, TOTAL	0.2 - 1.2 mg/dL	1.5 ^
AST	5 - 34 U/L	37 ^
ALT	0 - 55 U/L	28
ALKALINE PHOSPHA- TASE	40 - 150 U/L	67
SODIUM	136 - 145 mmol/L	139
POTASSIUM	3.5 - 5.1 mmol/L	3.1 🗸
CHLORIDE	98 - 107 mmol/L	111 ^
CO2	22.0 - 29.0 mmol/L	19.0 🗸
GFR:NON-AFRICAN AMERICAN	arbitrary unit	>60
GFR:AFRICAN AMERI- CAN	arbitrary unit	>60

Case 1 Surgical Resection

Surgeon – Dr. Mostafa Resident – Dr. Johnson CSA – Justin Maxey

- Right fronto-temporal / pterional craniotomy, subfrontal approach
- Steal neuro navigation
- Devascularized from skull base and debulked with ultrasonic aspirator
- Intraoperative frozen section favored meningioma
- Small piece of tumor adherent to right ACA A1 segment was left (Simpson grade IV?)
- Enormous amount of irrigation prior to closure

Case 1 Pathology

• FINAL DIAGNOSIS:

A. Skull base tumor:
Meningioma, WHO grade 1.

B. Skull base tumor: Meningioma, WHO grade 1.

Comment: Sections show fragments of meningothelial cells, fibrin, red cells, and cell debris.

Well-controlled immunohistochemical stains as follows:

Positive for epithelial membrane antigen (EMA), strongly positive for progesterone receptor, with 2 to 3% positivity for Ki-67 proliferation marker.

Meningothelial meningiomas (also known as syncytial or endothelial meningiomas) are the most common histological subtype of meningioma, found in $\sim 60\%$ of all meningiomas, most frequently combined with fibrous meningioma (40%) or in isolation (17%)

Case 1 Post-Op

- post-operatively sent to ICU, intubated
- Extubated on POD#1
- POD#2
 - no neurological deficits
 - Some right periorbital edema
- POD#3
 - Advanced to regular diet
- Discharged on POD#5

Case 2 Presentation

- 44yo right-handed female
- h/o vit D deficiency, ADD, tobacco use
- Presented to clinic with gradual worsening of vision L>R, anosmia for 7 years
- MR brain ordered after ophthalmological assessment showed 7cm presumed meningioma in olfactory groove

• Admitted for elective surgical resection preceded by endovascular embolization

Case 2 Workup

- CBC, CMP
- MRI brain with and without contrast
- MRI brain stealth
- Cerebral four vessel angiogram
- CT brain without contrast

WBC	4.00 - 11.00 10^3/uL	9.24
RBC	3.50 - 5.20 10^6/uL	4.64
HGB	11.0 - 16.0 g/dL	14.5
HCT	34.0 - 47.0 %	43.4
MCV	80.0 - 100.0 fL	93.5
МСН	26.0 - 33.0 pg	31.3
МСНС	31.0 - 35.0 g/dL	33.4
RDW	12.0 - 15.0 %	12.6
RDW-SD	38.0 - 52.0 fL	43.1
PLATELET	140 - 400 10^3/uL	296
MPV	9.0 - 12.0 fL	8.9 🗸
SEG	%	61.9
LYMPHOCYTE	%	31.5
MONOCYTE	%	4.7
EOSINOPHIL	%	1.5
BASOPHIL	%	0.3
IMMATURE GRANULO- CYTE	%	0.1
ABSOLUTE NEUTR	1.60 - 7.70 10^3/uL	5.72
ABSOLUTE LYMPH	1.00 - 4.90 10^3/uL	2.91
ABSOLUTE MONO	0.00 - 1.10 10^3/uL	0.43
ABSOLUTE EOS	0.00 - 0.50 10^3/uL	0.14
ABSOLUTE BASO	0.00 - 0.20 10^3/uL	0.03
ABSOLUTE IMMATURE	0.00 - 0.09 10^3/uL	0.01
GRANULOCYTE		

ALCIUM	8.4 - 10.2 mg/dL	8.8
GLUCOSE	74 - 106 mg/dL	116 ^
BUN	7 - 17 mg/dL	5 🗸
CREATININE	0.52 - 1.04 mg/dL	0.62
OTAL PROTEIN	6.3 - 8.2 g/dL	6.7
ALBUMIN	3.5 - 5.0 g/dL	3.8
BILIRUBIN, TOTAL	0.2 - 1.3 mg/dL	0.4
AST	14 - 36 U/L	22
ALT	0 - 34 U/L	25
ALKALINE PHOSPHA- ASE	38 - 126 U/L	72
ODIUM	137 - 145 mmol/L	144
OTASSIUM	3.5 - 5.1 mmol/L	3.2 ❤
HLORIDE	98 - 107 mmol/L	112 ^
:02	22.0 - 30.0 mmol/L	26.0

Case 2 Surgical Resection

Preceded by left meningeal and left sphenopalatine branch embolization with Onyx

Surgeon – Dr. Mostafa CSA – Tammi Holmes

- Left pterional subfrontal approach
- Devascularization and debulking with bipolar electrocautery and elliquence device
- Gross total resection was achieved
- Both optic nerves and optic chiasm were decompressed
- Enormous amount of irrigation prior to closure

Case 2 Pathology

FINAL DIAGNOSIS:

A and B: Skull base tumor: Meningioma, fibrous type, WHO Grade 1.

Comment: Well-controlled immunostains show the lesional cells to be positive for EMA, diffusely positive for PR; negative for S100 and GFAP. Ki67 proliferative index is approximately 10%.

Fibrous meningiomas (also known as fibroblastic meningiomas) are the second most common histological subtype of meningioma, found in $\sim 50\%$ of all meningiomas, usually along with meningothelial histology (40%) or in isolation (7%). They are, for some reason, the most common intraventricular meningioma histological subtype.

Case 2 Post-Op

- Post-operatively sent to ICU, intubated
- POD#1
 - Extubated on room air
 - hypernatremic to 154, concern for DI
- POD#2
 - Agitated, drowsy, impulsive, not following commands
- POD#5
 - Hypernatremia resolved
- POD#7
 - Admitted to inpatient rehab for deficits in mobility, ADLs, IADLs, speech, language, cognition
- Discharged on POD#17

References:

- Shibuya M. (2015). Pathology and molecular genetics of meningioma: recent advances. Neurologia medico-chirurgica, 55(1), 14–27. https://doi.org/10.2176/nmc.ra.2014-0233
- https://www.pennmedicine.org/updates/blogs/neuroscience-blog/2018/november/what-are-the-most-common-types-of-brain-tumors
- Park, J. K., & Wen, P. Y. (2017). Epidemiology, pathology, clinical features, and diagnosis of meningioma. UpToDate, Waltham, MA.(Accessed July 17, 2021.).
- Adappa, N. D., Lee, J. Y., Chiu, A. G., & Palmer, J. N. (2011). Olfactory groove meningioma. Otolaryngologic Clinics of North America, 44(4), 965-980.
- Tuna H, Bozkurt M, Ayten M, Erdogan A, Deda H. Olfactory groove meningiomas. J Clin Neurosci. 2005 Aug;12(6):664-8. doi: 10.1016/j.jocn.2005.05.002. PMID: 16109489.
- Case courtesy of Dr Victor Yang, Radiopaedia.org, rID: 36459
- Chang, S.D. Which meningiomas Should Not Be Treated. 2020 Sep. https://www.youtube.com/watch?v=JZI7jOSIP5c&t=2177s
- Rodríguez-Porcel F, Hughes I, Anderson D, Lee J, Biller J. Foster Kennedy Syndrome Due to Meningioma Growth during Pregnancy. Front Neurol. 2013;4:183. Published 2013 Nov 11. doi:10.3389/fneur.2013.00183
- https://radiopaedia.org/articles/meningioma?lang=us
- https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Meningiomas
- Liu, J. K., Christiano, L. D., Patel, S. K., Tubbs, R. S., & Elov, J. A. (2011). Surgical nuances for removal of olfactory groove meningiomas using the endoscopic endonasal transcribriform approach. Neurosurgical focus, 30(5), E3.
- Maas, Sybren LN, et al. "Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and 12. Prospectively Validated." Journal of Clinical Oncology (2021).
- 13. https://radiopaedia.org/articles/fibrous-meningioma?lang=us

Images:

- Case courtesy of Dr Victor Yang, Radiopaedia.org, rID: 36459
- Rodríguez-Porcel F, Hughes I, Anderson D, Lee J, Biller J. Foster Kennedy Syndrome Due to Meningioma Growth during Pregnancy. Front Neurol. 2013;4:183. Published 2013 Nov 11. doi:10.3389/fneur.2013.00183
- https://radiopaedia.org/cases/olfactory-groove-meningioma-5?lang=us

Link to this presentation:

